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Abstract. The notions of semi-endogenous and non-scale growth are sometimes used inter-

changeably. This paper shows that they are logically independent. It is proven that the existence

of a steady state generally depends on knife-edge conditions. Choosing a linear population

equation implies that only models of semi-endogenous growth without scale-effects do not de-

pend on further knife-edge conditions.
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1 Introduction

Romer’s (1990) model of endogenous technological change has been criticized by Jones

(1995) for the involved scale-effects of the size of the economy (measured by population

size, e.g.). Jones’ model does not involve these scale-effects and he calls it a model of

semi-endogenous growth, because technological change is endogenous while the steady

state growth rates are pinned down by the exogenous rate of population growth, largely

independent of policy measures. Subsequently, models of this kind have also been

denoted as non-scale growth models (e.g. Eicher and Turnovsky, 1999; Jones, 1999).

While it is obvious from considering the so-called second generation of non-scale mod-

els (e.g. Peretto, 1998) or even the pioneering Uzawa-Lucas model (Lucas, 1988, sec.

4) that a non-scale model need not be a model of semi-endogenous growth, a clear-cut

distinction of these notions is missing.

Abstracting from the microeconomic foundations of R&D and other sources of

growth, this paper introduces a simple but general model in order to prove the fol-

lowing assertions. First, any model of balanced growth requires a knife-edge condition

to be met. A justifiable knife-edge condition is the assumption that the growth rate of

population is constant. Second, only semi-endogenous non-scale growth models do not

depend on further knife-edge restrictions. Third, the absence of scale-effects is neither

necessary nor sufficient for growth to be semi-endogenous.

Apart from the third assertion, these results are known, but only proven for spe-

cial cases or hidden behind sophisticated models (cf. e.g. Eicher and Turnovsky, 1999;
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Jones, 1999, 2001; Li, 2000). It is the purpose of the present paper to give a simple, uni-

fied treatment of these issues in a general setting. E.g., while the knife-edge condition

is usually formulated with respect to a particular parameter of a parameterized model,

Proposition 1 below provides a general criterion in terms of a determinant.

2 The Model

With respect to the following definitions it is assumed that economic policy cannot in-

fluence the growth rate of population and the parameters of the production functions.

As usual, however, it can affect resource allocation (including savings) by taxes and

subsidies, e.g. A balanced growth path (or steady state) is a path where all variables

grow at constant rates. Growth involves (no) scale-effects if long-run per capita growth

rates (do not) vary with the size of the economy as measured by its population. Growth

is endogenous if long-run per capita growth rates are positive without exogenous tech-

nical progress and sensitive to economic policy affecting resource allocation. Growth

is semi-endogenous if long-run per capita growth rates are positive without exogenous

technical change but insensitive to economic policy.

Let Y be the output of the final good, A the stock of technology, L the popula-

tion (labor force), and K the stock of physical capital. The final good can be used

for consumption as well as for capital accumulation. Consider the following general

three-sector production structure:

Y = F(kY K,aY A, lY L), (1)

Ȧ = G(kAK,aAA, lAL), (2)

L̇ = H(kLK,aLA, lLL), (3)

where ∑i xi = 1 (x = k,a, l; i = Y,A,L) if the respective input is private (rival in use).

In this case, xi is the fraction of the private input devoted to the production of output i.

However, inputs may as well be public goods. E.g., if ai = 1 ∀i, A is a pure public input,

which should be interpreted as general knowledge, while it could be human capital

as a private input. In-between cases are also possible. E.g., if lY + lA = 1 and lL =
1, labor would as a private input be allocated to the production of Y and Ȧ, while it

could at the same time be used as an input for the production of children. Equations

(1)–(3) generalize the production structure analyzed by Eicher and Turnovsky (1999)

by allowing for the possibility of external effects of all three factors of production and

adding a kind of production function for labor.

As the growth rate gL := L̇/L of population equals the difference between the birth

rate b and the mortality rate d, the function H must satisfy the condition

H(kLK,aLA, lLL) ≡ (b−d)L. (4)

Both b and d may depend on the stock of technology A and on the resources lLL and

kLK devoted to child bearing and medical care, e.g. In case of an optimizing solution

with respect to fertility, the optimum birth rate in feedback form will also depend on the

state variables of the model.1 The particular reason for the dependency of H on K, A

and L is irrelevant with respect to the following analysis, however.

1Endogenous fertility is analyzed by Becker and Barro (1988) and Jones (2001), e.g.
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Turning to the demand side, it suffices to assume that the consumption function

implies a constant steady state consumption rate, c = C/Y (this will be the case for

optimum consumption paths as well as for constant savings rates, e.g.). Neglecting the

depreciation of capital, the capital accumulation equation K̇ = Y −C and the constancy

of

gK :=
K̇

K
=

Y

K
−

C

Y
︸︷︷︸

=c<1

Y

K

then imply that gY = gK = gC (all growth rates are denoted by g). Since all variables

grow at constant rates in a steady state, all xi fractions in (1)–(3) must be constant.

Using gY = gK , gA = gȦ, and gL = gL̇ in case of constant growth rates, logarithmic

differentiation of equations (1)–(3) along a balanced growth path yields





(1−σK) −σA −σL

−ηK (1−ηA) −ηL

−µK −µA (1−µL)









gK

gA

gL



 =





0

0

0



 , (5)

where σi, ηi, and µi, i = K,A,L, are the non-negative output elasticities of capital,

knowledge, and labor with respect to the functions F , G and H, respectively.

It is a standard result of linear algebra that a homogeneous system of linear equa-

tions such as (5) has only the trivial solution gK = gA = gL = 0 if |J| 6= 0, where J is

the matrix on the left hand side of equation (5). Hence, a positive solution with respect

to the growth rates is impossible unless |J| = 0. But |J| = 0 is just a general knife-edge

condition pertaining to the output elasticities.2 This result yields

Proposition 1 A steady state with positive growth rates does not exist unless the knife-

edge condition |J| = 0 is met.

In view of Proposition 1, one needs a good justification of the consideration of

balanced growth models. Most existing models assume that a particular equation of

(1)–(3) is linear in order to get |J| = 0. As Jones (2001) has pointed out, with the

exception of those assumptions pertaining to the population equation, these assumptions

are completely ad hoc. E.g., Lucas (1988) uses a linear equation for Ȧ, implying that

doubling the stock of human capital, A, leads to doubling the change in human capital.

“If a 7th grader and a high school graduate each go to school for 8 hours per day, does

the high school graduate learn twice as much?” (Jones, 2001, p. 12). Similar objections

pertain to the linearity assumptions in other models, e.g. those following Romer (1990),

where A denotes the stock of existing ideas or designs.

In contrast, if individuals choose a particular number of children, the total number

of children clearly doubles if population doubles. Thus, linearity in the population

equation results from the standard replication argument. Although the function b−d =
H(kLK,aLA, lLL)/L is not constant in the general formulation in (3), it must be noted

that the number of children per family is bounded from above and below by nature.

2A rigorous argument proceeds as follows. The set of all square matrices in Rn with non-zero determi-

nant is a dense open subset of the set of all square matrices in Rn (cf. e.g. Hirsch and Smale, 1974, p. 157).

Thus, a square matrix with zero determinant can always be turned into a matrix with non-zero determinant

by an arbitrarily slight perturbation of its entries.
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Also, history teaches us that the birth rate may well exceed the death rate for long time

horizons and that exponential population growth is possible. Defining n := b− d, the

assumption that n is constant therefore seems to be a justifiable abstraction from reality.3

Equation (3) then reads L̇ = nL, which is a knife-edge condition requiring linearity in

L.

In this case, equations (1)–(3) may be simplified by dropping (3) and using gL = n

in (1) and (2). Logarithmic differentiation then yields

(
(1−σK) −σA

−ηK (1−ηA)

)(
gK

gA

)

=

(
σLn

ηLn

)

, (6)

the system analyzed by Eicher and Turnovsky (1999). If the right hand side has at least

one positive element (i.e., n > 0 and σL > 0 and/or ηL > 0), this system of equations in

gK and gA has a unique solution if and only if |I| 6= 0, where I is the matrix on the left

hand side of (6). This solution is

gK =
σL(1−ηA)+ηLσA

|I|
︸ ︷︷ ︸

=:γK

n = γKn, gA =
ηL(1−σK)+σLηK

|I|
︸ ︷︷ ︸

=:γA

n = γAn. (7)

Using the non-negativity of output elasticities, Eicher and Turnovsky (1999) show that

if the right hand side of (6) is positive, the steady state growth rates of Y , C, K, and A

are positive if and only if |I| > 0 and σK < 1. They also provide sufficient conditions

for γK > 1, which implies that gy = gY −gL = (γK −1)n > 0, where y = Y/L.

Regarding the present discussion, it is important to observe that the growth rates in

(7) are determined by the exogenous growth rate n of population and output elasticities

alone, which follows solely from |I| 6= 0. Thus, if γK > 1, growth is semi-endogenous

and involves no scale effects. Only if the additional knife-edge condition |I| = 0 was

met, growth could be endogenous and/or involve scale-effects. This proves

Proposition 2 If the growth rate of population is exogenous, endogenous growth and/or

growth with scale-effects is impossible unless the additional knife-edge condition |I|= 0

is met.

As it is straightforward to generalize criterions in terms of determinants to higher di-

mensions, the arguments leading to Propositions 1 and 2 would be equally valid in case

of two knowledge indices, A1 and A2, say. The analysis therefore also applies to the

second generation of non-scale models with two R&D sectors.

All conditions refer to the steady state, which presupposes that γK and γA in (7) are

constant. Sufficient conditions are: First, constant returns to scale with respect to both

production functions, second, both production functions are Cobb-Douglas, and third, a

separability condition (cf. Eicher and Turnovsky, 1999, p. 404), which, however, does

not add too much generality compared to the Cobb-Douglas case.

3It is understood that there are plausible cases in which the assumption that n is constant is not met.

E.g., if the birth rate asymptoted to the death rate, n would be decreasing in time and growth would be

unbalanced by definition. However, as n → 0 for t → ∞, there could be an asymptotic steady state in which

all growth rates are zero, cf. equations (7) below. As long as t < ∞, the dynamics off the steady state would

have to be considered, however. Considering balanced growth therefore requires a simplifying assumption

such as a constant n.
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3 Special Cases

As shown by Eicher and Turnovsky (1999), the model described by (6) comprises the

production sectors of several well-known models of economic growth as special cases.

Among these are the models of Romer (1990), Jones (1995), and the Uzawa-Lucas

model (Lucas, 1988, Sec. 4). While the Romer model is endogenous with scale effects,

the Jones model is of the non-scale semi-endogenous type. The Uzawa-Lucas model

generates endogenous growth without scale effects. The only type of model that is

not known by now is a model of semi-endogenous growth with scale effects. Thus,

the logical independence of the notions of semi-endogenous and non-scale growth is

proven by giving an example of such a model.

The following is not to be understood as a realistic description of actual growth

processes, but just as an example showing the logical possibility of semi-endogenous

growth with scale effects. Let

Y = Kα1(AL)α2 , 0 < α1,α2 < 1

Ȧ = ψAL, ψ > 0.

Observe that |I| = 0. The second equation implies gA = ψL. Thus, a steady state does

not exist unless n = 0. In this case, the first equation implies gY = gK = α2gA/(1−α1),
which together with gA = ψL and y = Y/L yields

gy = gY =
α2

1−α1

ψL.

As there is no possibility of raising this positive growth rate by e.g. a reallocation of

labor, growth is semi-endogenous. Nevertheless, apparently there is a scale-effect of

the population size. This proves

Proposition 3 The notions of semi-endogenous growth and non-scale growth are log-

ically independent.

4 Conclusion

A balanced growth path does not exist without any knife-edge conditions. The only

such condition that appears to be justifiable is L̇ = nL. Accepting this condition implies

that a robust model of economic growth must be of the semi-endogenous non-scale type,

although these notions are logically independent. Thus, if we want to analyze models

of economic growth with steady states, we must be prepared to accept that the result

with respect to per capita growth rates of income is of the form

gy = constant ·n, (8)

where the constant is not subject to political influence.

This result involves two principal problems. First, it implies the counterfactual pre-

diction that the growth rate of per capita income always increases in the growth rate of

population. This population puzzle can be solved by considering open economy mod-

els of non-scale growth (cf. Christiaans, 2003). Second, semi-endogenous growth is a
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sobering implication. However, if trade policy can influence the pattern of international

specialization and if growth potentials in different production sectors differ, trade policy

should affect long-run growth rates. These issues await a further clarification. Another

approach is the consideration of endogenous fertility, turning n into an endogenous

variable that may be affected by economic policy (cf. Jones, 2001).

References

Becker, G. S. and R. J. Barro, 1988. A reformulation of the economic theory of fertility. Quar-

terly Journal of Economics 108, 1–25.

Christiaans, T., 2003. Balance of payments constrained non-scale growth and the population

puzzle. Topics in Macroeconomics 3. No. 1, Article 1.

Eicher, T. S. and S. J. Turnovsky, 1999. Non-scale models of economic growth. Economic

Journal 109, 394–415.

Hirsch, M. W. and S. Smale, 1974. Differential Equations, Dynamical Systems, and Linear

Algebra (Academic Press, New York).

Jones, C. I., 1995. R&D-based models of economic growth. Journal of Political Economy 103,

759–784.

Jones, C. I., 1999. Growth: With or without scale effects. American Economic Review, Papers

and Proceedings 89, 139–144.

Jones, C. I., 2001. Population and ideas: A theory of endogenous growth. U.C. Berkeley and

NBER, Discussion Paper, Version 5.0.

Li, C.-W., 2000. Endogenous vs. semi-endogenous growth in a two-R&D-sector model. Eco-

nomic Journal 110, C109–C122.

Lucas, Jr., R. E., 1988. On the mechanics of economic development. Journal of Monetary

Economics 22, 3–42.

Peretto, P. F., 1998. Technological change and population growth. Journal of Economic Growth

3, 283–311.

Romer, P. M., 1990. Endogenous technological change. Journal of Political Economy 98, S71–

S102.

6


	Introduction
	The Model
	Special Cases
	Conclusion
	References

